

AKSHATH RAGHAV RAVIKIRAN

765-404-8121 araviki@purdue.edu linkedin.com/in/akshathrr [github.io](https://github.com/akshathraghav.github.io)

SUMMARY

MS ECE Candidate seeking full-time (August 2026) Digital Design roles focused on CPU microarchitecture, simulation and performance analysis.

EDUCATION

Purdue University, West Lafayette

Master of Science in Electrical and Computer Engineering

Bachelor of Science in Computer Engineering

Cumulative GPA: 3.64

August 2025 – August 2026

August 2022 – December 2025

Coursework: Computer Architecture, MOS VLSI Design, AI Hardware Design, ASIC Design, Operating Systems, Microprocessors & MCUs

Honors: ECE Senior Design Award, Eli Shay Scholarship, UIUC HDR Fellowship, Outstanding Sophomore (VIP), Dean's List & Semester Honors (7x)

Organizations: IEEE Eta Kappa Nu, Purdue SoCET, ECE Graduate Student Association, Purdue Chess Club

TECHNICAL SKILLS

AI/ML (PyTorch/TensorFlow) | GPU Programming (CUDA/Triton) | Parallel Programming (OpenMP) | Bash, TCL Scripting. C/C++/Assembly | Modelling w/ Gem5 & GPGPU-Sim | Protocols – Serial (SPI/I²C/UART) & AMBA (AXI, AHB) | Embedded C w/ ESP-IDF. SystemVerilog, UVM | RTL simulation (QuestaSim, Verilator) | FPGA synthesis (Xilinx Vivado/Vitis) | ASIC STA & synthesis (Cadence Genus).

EXPERIENCE

Research Assistant

Purdue SoCET (PI: Prof. Mark Johnson, Purdue-ECE)

July 2024 – Present

West Lafayette, IN, US

- AI Hardware: Leading on-chip [Memory Subsystem](#) for Atalla Tensor Core; focusing on architecture diagramming & ISA design.
 - Built a cycle-accurate simulator of the datapath for **performance modelling** using implicit-convolution and GEMM kernels.
 - Architected a parameterizable 2MB Scratchpad with on-the-fly swizzling and a pipelined $N \times N$ crossbar — optimized for PPA.
 - Designed FP16 datapaths between Systolic Array & Vector Core; integrating DDR4 controller for asynchronous DRAM transfers.
- GPU: Advising Hardware team in RTL Design & Python Modeling; designing custom Cardinal GPU Core for graphics workloads.
 - Implemented a [lockup-free-cache cache](#) – Achieved 100% coverage (ModelSim); Optimized to synthesize (Genus) at 700MHz.
 - Modelling per-warp divergence-mitigation heuristics in GPGPU-Sim; simulated to improve IPC [up to 13%](#) on Rodinia benchmarks.
- Enhanced the [AFTx07 RISC-V core](#) with Zicond extension for macro-fusion of conditional arithmetic/logic sequences.

ML Engineering Researcher

Duality Lab (Contract w/ Google LLC – PI: Prof. James Davis, Purdue)

August 2023 – April 2024

West Lafayette, IN, US

- Helped re-engineer the [MaskFormer model](#) from PyTorch to TensorFlow to run on GCP TPUs & integrate into the TF Model Garden.
- Contributed to a technical [white paper](#), providing implementation guidance for TPU-focused **HW/SW co-design**.
- Integrated auxiliary losses & conducted hyperparameter tuning to increase Panoptic Quality scores by 25% on the COCO Dataset.
- Performed distributed training on GCP & debugged on RCAC Gilbreth w/ a MLOps workflow to track model improvements.

AI Engineering Intern

BMW - Group IT

May 2025 – August 2025

Munich, Bavaria, Germany

- Built remote [AI Agents](#) w/ LangGraph to crawl enterprise apps & automatically run QA tests – eliminating Playwright automation KPIs.
- Hosted a Github Copilot Assistant for human-in-the-loop provisioning of Azure infra, helping full-stack devs deploy apps internally.
- Deployed FastMCP connectors for core DevOps platforms into GAIA (internal AI platform) w/ AWS Lambda & EventBridge.
- Engineered RAG connectors exposing searchable knowledge graphs in AI IDEs – validated to **outperform GAIA** on 10K+ LOC docs.

SELECTED PROJECTS

BoilerNet – Compute-Enabled Mini-NAS

KiCad 9.0, PCB Bring-Up, Edge ML, Networking Protocols

- Designed PCBs, assembled into 3D-printed enclosures, to form a Network Attached Storage w/ swappable compute blades & memory slots.
- Received Purdue ECE's [Senior Design Award](#) in Spring '25 for our **decentralized microcontroller** stack & master/slave SPI-based drivers.
- Supports INT16/FP16 quantized MobileNetV2 models with DMA-friendly data-parallel pipelines through TFLite Micro and ESP-IDF.

RISCV Five-Stage Multicore Processor

QuestaSim, Xilinx Vivado, RTL Design, FPGA Prototyping

- [Pipelined processor](#) implementing branch prediction, forwarding/hazard detection logic and dual-core MSI snoopy cache coherency.
- Synthesized to DE2-115 FPGA at 60MHz — Performed **static timing analysis** showing $2.77 \times$ speedup over single-cycle design.
- Memory controller arbitrates read/write memory accesses to external memory and supports variable-latency access.

gem5 Microarchitecture Studies

gem5, Architectural Simulation, CPU Performance Analysis

- Added a Waiting Instruction Buffer into the **O3 CPU** to offload load-dependencies, [improving IPC](#) by up to 13% on SPEC benchmarks.
- Implemented a victim cache with no-allocate and mostly-exclusive policies, reducing L1 miss rates by upto 5% on high-locality workloads.

8-bit Wallace Tree Multiplier – Physical Design

Cadence Virtuoso ADE, GPDK45nm

- Designed a Wallace Tree Multiplier using the full-adder inversion property, saving 298 transistors and [achieving a \$3305 \mu\text{m}^2\$ footprint](#).
- Completed **schematic-to-layout flow** with DRC/LVS and post-layout parasitic extraction, with 1.74 ns delay and 320 fJ energy (1.0 V).

tinySpeech – Speech Recognition on Edge Devices

PyTorch, ML Quantization, MCU Programming

- Reproduced TinySpeech word-recognition models; Achieved 91% precision benchmarks w/o access to DarwinAI's proprietary code.
- Custom **quantization-aware training** pipelines allow for INT4/8 training and PerTensor/PerWeight scales, with 5% accuracy drop.
- Developed an embedded C-based [inference engine](#), optimized for INT8 precision targeting RISCV-EC architecture.